Dissertation Defense
Master of Science in Information Science

Optimal Entanglement Distillation Policies for Quantum Switches
by Vivek Kumar

Date: November 28, 2023
Time: 3:00 p.m. – 4:30 p.m.
Place: Room 302, Information Sciences Building, 135 N Bellefield Ave,
Pittsburgh PA 15260

Committee:
- Kaushik Seshadreesan, Assistant Professor, Department of Informatics and
Networked Systems, School of Computing and Information
- David Tipper, Professor, Department of Informatics and Networked Systems, School of Computing and Information
- Alan Scheller-Wolf, Professor, Tepper School of Business, Carnegie Mellon University

Abstract:
In an entanglement distribution network, the function of a quantum switch is to generate
elementary entanglement with its clients followed by entanglement swapping to distribute end-
to-end entanglement of sufficiently high fidelity between clients. The threshold on entanglement
fidelity is any quality-of-service requirement specified by the clients as dictated by the
application they run on the network. We consider a discrete-time model for a quantum switch
that attempts generation of fresh elementary entanglement with clients in each time step in the
form of maximally entangled qubit pairs, or Bell pairs, which succeed probabilistically; the
successfully generated Bell pairs are stored in noisy quantum memories until they can be
swapped. We focus on establishing the value of entanglement distillation of the stored Bell pairs
prior to entanglement swapping in presence of their inevitable aging, i.e., decoherence: For a
simple instance of a switch with two clients, exponential decay of entanglement fidelity, and a
well-known probabilistic but heralded two-to-one distillation protocol, given a threshold end-to-
end entanglement fidelity, we've employed both the Markov Decision Processes framework
and a Reinforcement Learning approach to find optimal policies. This dual approach allows us
to address the discrete state space assumptions that constrained the Markov Decision Process Model. By integrating Reinforcement Learning, we aim to enhance our model's flexibility. With
these combined methodologies, our goal is to pinpoint the optimal action policy—whether it's
waiting, distilling, or swapping—that can effectively maximize throughput. We compare the
switch's performance under the optimal distillation-enabled policy with that excluding
distillation. Simulations of the two policies demonstrate the improvements that are possible in
principle via optimal use of distillation with respect to average throughput, average fidelity, and
jitter of end-to-end entanglement, as functions of fidelity threshold. Our model thus helps
capture the role of entanglement distillation in mitigating the effects of decoherence in a
quantum switch in an entanglement distribution network, adding to the growing literature on
quantum switches. We also compare the switch's performance found using simulations with
theoretical bounds found out by employing queuing theory concepts on the same model.